Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex.
نویسندگان
چکیده
A sinusoidal mask grating oriented orthogonally to and superimposed onto an optimally oriented base grating reduces a cortical neuron's response amplitude. The spatial selectivity of cross-orientation suppression (XOR) has been described, so for this paper we investigated the temporal properties of XOR. We recorded from single striate cortical neurons (n = 72) in anesthetized and paralyzed cats. After quantifying the spatial and temporal characteristics of each cell's excitatory response to a base grating, we measured the temporal-frequency tuning of XOR by systematically varying the temporal frequency of a mask grating placed at a null orientation outside of the cell's excitatory orientation domain. The average preferred temporal frequency of the excitatory response of the neurons in our sample was 3.8 (+/- 1.5 S.D.) Hz. The average cutoff frequency for the sample was 16.3 (+/- 1.7) Hz. The average preferred temporal frequency (7.0 +/- 2.6 Hz) and cutoff frequency (20.4 +/- 6.9 Hz) of the XOR were significantly higher. The differences averaged 1.1 (+/- 0.6) octaves for the peaks and 0.3 (+/- 0.4) octaves for the cutoffs. The XOR mechanism's preference for high temporal frequencies suggests a possible extrastriate origin for the effect and could help explain the low-pass temporal-frequency response profile displayed by most striate cortical neurons.
منابع مشابه
Organization of suppression in receptive fields of neurons in cat visual cortex.
1. The response to an optimally oriented stimulus of both simple and complex cells in the cat's striate visual cortex (area 17) can be suppressed by the superposition of an orthogonally oriented drifting grating. This effect is referred to as cross-orientation suppression. We have examined the spatial organization and tuning characteristics of this suppressive effect with the use of extracellul...
متن کاملLocal correlation-based circuitry can account for responses to multi-grating stimuli in a model of cat V1.
In cortical simple cells of cat striate cortex, the response to a visual stimulus of the preferred orientation is partially suppressed by simultaneous presentation of a stimulus at the orthogonal orientation, an effect known as "cross-orientation inhibition." It has been argued that this is due to the presence of inhibitory connections between cells tuned for different orientations, but intrace...
متن کاملRole of inhibition in the specification of orientation selectivity of cells in the cat striate cortex.
Mechanisms supporting orientation selectivity of cat striate cortical cells were studied by stimulation with two superimposed sine-wave gratings of different orientations. One grating (base) generated a discharge of known amplitude which could be modified by the second grating (mask). Masks presented at nonoptimal orientations usually reduced the base-generated response, but the degree of reduc...
متن کاملRelationship between spatial-frequency and orientation tuning of striate-cortex cells.
If striate cells had the receptive-field (RF) shapes classically attributed to them, their preferred spatial frequencies would vary considerably with orientation. Other models of RF shape would predict a greater independence between orientation and spatial-frequency tuning. We have examined this by recording the responses of cat striate-cortex cells to a wide range of different spatial-frequenc...
متن کاملDual Inhibitory Mechanisms for Definition of Receptive Field Characteristics in a Cat Striate Cortex
In single cells of the cat striate cortex, lateral inhibition across orientation and/or spatial frequency is found to enhance pre-existing biases. A contrast-dependent but spatially non-selective inhibitory component is also found. Stimulation with ascending and descending contrasts reveals the latter as a response hysteresis that is sensitive, powerful and rapid, suggesting that it is active i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Visual neuroscience
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2001